Расчет на продавливание плиты перекрытия пример

Монолит 21.1

При создании программы использовались «Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры», «Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения)», справочное пособие «Проектирование железобетонных конструкций».

Результатом работы программы является необходимый комплект рабочих чертежей перекрытия.

Предусмотрена полная унификация арматурных изделий. Все выходные документы готовятся в стандартных форматах большинства используемых печатающих устройств А4 и А3.

Режим ввода исходных данных — «Схема перекрытия»

Формирование схемы монолитного перекрытия

Общая схема перекрытия компонуется на ортогональной сетке узлов, имеющих последовательную нумерацию.

Узлы располагаются в местах пересечения конструктивных элементов перекрытия — балок, стен, колонн. Плиты перекрытия постоянной толщины приняты расположенными в уровне верхней грани балок.

Балки прямоугольного сечения (таврового с полкой у верхней грани) подразделяются на второстепенные, воспринимающие равномерно распределенную нагрузку от плит перекрытия, и главные, несущие нагрузку от второстепенных балок перпендикулярного направления. Опорами перекрытия служат несущие стены здания и/или колонны монолитного каркаса. При этом условия опирания перекрытия на стены определяются материалом стен: кирпичных, предусматривающих свободное безмоментное опирание балок и плит, и бетонных, монолитно связанных с перекрытием и обеспечивающих жесткое моментное сопряжение балок и плит с опорной конструкцией. Все несущие элементы сооружения (стены, колонны, балки) могут быть размещены эксцентрично относительно осей, соединяющих узлы разбивочной сетки.

Сетки и каркасы

Текущая версия программы предусматривает армирование конструкций сварными каркасами и сетками, изготовляемыми с помощью точечной сварки соединений стержней.

Режим «Конструирование» — «Результаты»

Результатом работы программы является необходимый комплект рабочих чертежей перекрытия, опалубочный план с характерными сечениями, планы верхней и нижней арматуры плиты (раскладка арматурных сеток), арматурные чертежи балок, чертежи сварных каркасов и сеток, использованных для армирования плит и балок, ведомость деталей, ведомости расхода стали по балкам, плитам и сводная, а также спецификации по балкам, плитам и сводная, приводятся необходимые примечания. В подсистеме предусмотрена полная унификация арматурных изделий.

В состав рабочих чертежей проекта входят:

  • ведомость чертежей;
  • пояснительная записка;
  • конструктивная схема;
  • опалубочный план;
  • разрезы;
  • балки (пролеты);
  • колонны;
  • раскладка нижних сеток;
  • раскладка верхних сеток;
  • ведомость деталей;
  • ведомость расхода стали по плитам;
  • спецификация по плитам;
  • сводная ведомость расхода стали;
  • сводная спецификация.

Узнать цену на «МОНОЛИТ 21.1»

Системные требования указаны для удобной работы (создание и расчет модели) непосредственно с вычислительным комплексом SCAD:

  1. операционная система Windows XP Professional SP2 (SP3) (рекомендуется), Windows XP Home SP2, Windows Vista, Windows 7;
  2. процессор (поддерживаются многопроцессорные системы) Intel Pentium IV (или аналогичный процессор AMD Athlon) с тактовой частотой 1,4 ГГц или выше;
  3. оперативная память 2 Гб и выше;
  4. жесткий диск от 120 Гб (для создания временных файлов при расчете);
  5. монитор VGA с разрешением 1024×768 в режиме True Color.

Рекомендуемые требования при работе с конфигурацией Smax (при расчете насыщенных моделей (более 392 000 степеней свободы) с большим количеством нагрузок):

  1. операционная система Windows XP Professional SP2, Windows XP Home SP2, Windows Vista, Windows 7;
  2. процессор Intel Pentium IV с тактовой частотой 3 Ггц;
  3. оперативная память 3 Гб;
  4. жесткий диск 320 Гб (для создания временных файлов при расчете);
  5. видеоадаптер с экранным разрешением 1280×1024 в режиме True Color (32 бит) и памятью не менее 128 Мб. Необходима поддержка OpenGL или Direct3D.

Под Windows 7×32 и x64 программа устанавливается и работает, но есть два нюанса:

  1. возможности 64-битной системы не используются: программа работает с той же производительностью, что и под х32;
  2. под Windows 7 нельзя воспользоваться возможностью самостоятельной перепрошивки ключа (при помощи исполняемого файла) в случае апгрейда или изменения конфигурации.

Комплект поставки

SCAD Office поставляется на DVD с локальным или сетевым ключом аппаратной защиты HSP.

Источник:

4. Расчет и конструирование монолитной железобетонной колонны. Примеры в скаде расчета железобетонного каркаса с монолитными колоннами и плитами

Монолитное железобетонное здание — далее просто здание — действительно здание.

Формы и очертания взяты с картинки из интернета и ничего общего с реальностью не имеют.

Заточим карандаши, положим перед собой лист бумаги и в бой.

Вот такая картина в первом приближении и рядом картина во втором. На второй картине нанесены вспомогательные линии, они помогут сделать хорошую сетку. Импортируем в SCAD, выбираем масштаб и получаем схему. Иногда бывает, что схема ориентирована не верно. Исправить можно функцией «геометрические преобразования».

Если все сделали правильно, то картина расчетный схемы при виде сверху будет соответствовать той, что была нарисована в AutoCAD.

Далее разбиваем сетку. Две мне известных функции есть в SCAD:

Узлы и элементы — Элементы — Добавление пластин.

Алгоритм работы инструмента — выбираем 4 узла, создаем элемент, затем разбиваем ее на нужное нам количество элементов инструментом «Дробление 4-х узловых пластин» в той же линейке. При дроблении надо следить за направлением местных осей, что делает это способ очень утомительным.

Схема — Генерация сетки произвольной формы. Здесь немного сложнее. Надо создать контур из любого количества точек, затем «Генерация треугольной сетки КЭ на плоскости».

В появившемся меню выбираем необходимые нам параметры. У обоих есть свои плюсы и минусы. Идеально они работает компенсирую друг друга.

Неважно каким из способов создавать сетке, главное результат. 

Ну вот и прошли эти 5-6 часов жизни (в какой-то сторонней программе на создание всей схемы с нагрузками ушло бы столько же). Результат ниже. 

Этажи у нас типовые (такое часто встречается), поэтому лучше всего отработать это перекрытие на все 100%: 

  • найти и исправить все ошибки (инструментов для этого на этой стадии, наверное, и нет, кроме визуального)
  • задать нагрузки 
  • направить вектора выдачи усилий в одну сторону (Назначение — Переход к напряжениям вдоль заданного направления для пластин) для корректного отображения усилий и результатов подбора арматуры 
  • задать типы элементов (в данном случае лучше оперировать 44 и 43 типами пластинчатых элементов)
  • задать оси здания и отметки перекрытий для удобства чтения схемы и т.д.
  • вставить АЖТ (Узлы и элементы — Специальные элементы — Твердые тела) в местах прохождения колонн через перекрытия. Тем самым мы снимем (хотя бы частично) пики усилий и как следствия армирования в этих местах (ставить из вовсе не обязательно, на усмотрение) 

Вот что я имел ввиду Это типовой этаж, с типовыми колонами, типовыми стенами лифта и типовыми лестницами (окрашенными в типовой приятный цвет © Ширвиндт).  Оси только так, SCAD не умеет рисовать их под углом. Вектора все направлены как следует (поверьте мне на слово). Нагрузки… Скорее всего список загружений будет следующим:Постоянные — собственный вес;  — вес конструкции пола;  — вес ограждающих конструкций;  — вес конструкции кровли;  — вес перегородок.

Временные

 — технологическая нагрузка и ее разновидности и варианты приложения;

 — снеговая нагрузка;

 — ветровая нагрузка.

Для ускорения процесса моделирования на типовую плиту можем задать нагрузку от пола, ограждающих конструкций, перегородок, технологическую нагрузку. Остальные (я привык) задаю после сборки всей схемы. Колонны для четырехэтажного здания скорее всего не будут большого сечения, 400х400 достаточно. Говорят, что балки при таких колоннах, для простого решения узла примыкания, целесообразно делать на 100 мм меньше. Высоту балок (сделаем ее тоже 300 для начала) будем корректировать позже. Толщина плиты подбирается исходя из конструктивного условия 1:30 пролета. Пролеты в данном случае везде разные, максимальный 6700 мм, то есть толщина плита 220 мм. Толщина стен шахты лифта 200 мм (это самодеятельность, так как классическая толщина 180 мм, на которой настаивает СП). Лестница — сборные ступени по стальным Z-образным косоурам, опирающимся на промежуточные стальные и этажные железобетонные балки. Лестница нужна исключительно для нагрузки (чтоб не высчитывать), ну и если понадобится, то ее можно легко превратить в монолитную. Чтобы лестница не оказывала влияние на остальные конструкции надо добавить шарниры и проконтролировать, лестница не имела общих узлов с перекрытием. Так же обращаем внимание куда попадает наш первый косоур. Если в основании у нас фундаментная плита, то просто опираем на нее, но если у нас столбчатый фундамент, придется либо добавлять дополнительные элементы, приводящие нагрузки в узлы колонн, или убирать первый марш и заменять его сосредоточенной нагрузкой. Есть и еще момент — в нормах есть разница между коэффициентами по нагрузке бетона и металла. И это может означает два загружения собственного веса. Задали загружение (можно одно), задали защемление колонн в фундаменте (Назначение — установка связей в узлах) и можно запускать расчет. Уверен, что ошибок масса. У меня всегда так. Есть программный контроль и нахождение ошибок — Управление — Экспресс контроль расчетной схемы. Но прежде для профилактики рекомендуется — Узлы и элементы — Узлы/Элементы — Объединение совпадающих узлов/элементов и Упаковка данных(!) Если ошибки остались — смотрим на какой узел или элемент ругается, находим и стараемся понять что не так. Когда все ошибки в типовом этаже будут исправлены, копируем его столько раз, сколько необходимо. В данном случае 4 раза. Четвертый и пятые этажи будут отличаться, над ними придется поработать, откорректировать. После каждой корректировки лучше проверять все загружение. Обязательно проверить условия прикрепления. Мы копировали этаж, который был закреплен (условия примыкания/закрепления копируются по умолчанию), и теперь в уровне каждого этажа колонны жестко закреплены, это надо исправить. Последний этаж меньшей высота, стало быть можно не без основательно полагать, что верхний узел предпоследнего этажа не совпадет с нижним последнего. Тоже лучше исправить. Подобных ситуация может быть больше в любом другом случае. Далее продолжаем работу со всей схемой — задаем оставшиеся нагрузки. Список загружений выглядит следующим образом: Несколько технологических загружений объясняется требованием руководства по расчету безбалочных перекрытий. Как собирались нагрузки: Шаг второй — расчет. Прежде чем приступить к расчету сформируем исходные данные для него: РСУ,  комбинации, данные для анализа устойчивости. По завершению расчета приступаем к анализу полученных результатовШаг третий — анализ Многие ограничиваются записью в протоколе расчета «Расчет выполнен». Надпись крупная, буквы заглавные, можно ставить точку. Но мы пойдем дальше. Нас будут интересовать деформации и прочность элементов, так как именно это интересует тех, кто идет далее по цепочке: заказчик, строители, эксперты, наконец. Деформации каркаса здания и прочность его элементов мы будем рассматривать исходя из жесткого защемления в фундаменте, то есть без учета совместной работы, так как не известно, что за фундамент будет в итоге: сваи, столбчатый, плита. (В действительности были разработаны все виды: столбчатые и сваи в ФОКе, плита здесь, в SCADe). С плитой все понятно, моделируем плиту, считаем, проверяем, все здесь, в одной программе (кстати, расчет плиты под это здание здесь). С ФОКом как быть? Поясню: посчитать в ФОКе, несмотря на то, что он чудит не хуже SCADa, а иногда и превосходит его, можно. Мы получим осадку, которую можно попробовать задать в расчетной схеме, но это осадка от всех нагрузок и так сказать «разом». В реальной жизни, здание будет садится плавно, от собственного веса, который, между прочим, чуть ли не 50% всех нагрузок. То есть такой подход не совсем верен, мягко говоря и, возможно даст не совсем адекватный результат армирования. То же можно и сказать о свайном фундаменте, хотя и осадка будет в разы меньше, а у нашего здания вообще вряд ли превысит одного сантиметра. Можно пойти на следующую хитрость — сделать два варианта каждого фундамента. Первый — собственный вес, второй — все загружения. Разницу между осадками задать в расчетной схеме. Подход грубый, но может дать некое представление о совместной работе и удовлетворить просящего или требующего такой расчет. Что нас может интересовать в анализе здания по деформациям? Деформации не должны превышать допустимых, формы собственных колебаний, по крайней мере первые две не должны быть крутильными (не знаю откуда растут ноги у этого утверждения, но оно используется настолько часто, что стало неким догматом при расчете на устойчивость). Прежде чем, позволю себе напомнить, что проверяем мы на нормативные нагрузки с учетом коэффициентов сочетания нагрузок и(!) с пониженным модулем бетона (это требование СП 52-103-2007 п.6.2.7). Возможно лучшим вариантом будет сделать отдельную схему с пониженными модулями и удалить из нее что-нибудь не относящиеся анализу на устойчивость, например — лестницы по стальным косоурам или еще что-нибудь, что может дать большие деформации и ввести в смуту.  При таких исходных данных даже в таком здании, как в этом примере, мы получим перемещения вертикальные более допустимых, но как бы не хотелось для примера, крутильную форму так и не получили. В любом случае каркас необходимо ужесточать. Как можно это сделать — конечно это диафрагмы. По своему опыту могу сказать, что мне не удалось указать на лучшее для этого место в здании. Был проведен не один десяток экспериментов для выявления лучшего места. Миссия по анализу деформаций на этом заканчиваться —  наши горизонтальные и вертикальные прогибы не превышают максимально допустимых и здание не крутит, по крайней мере в двух первых формах собственных колебания. Красота теперь выглядит так: Прочность элементов. При расчете прочности железобетонный или стальных элементов я всегда проверяю результат в «сторонней» программе, например «Арбат» или «Кристалл» для объективности (но ведь это программы одной и той же компании — скажете вы и будете правы, вот только как выяснилось, люди, работающие над одним продуктом, не знаю, что делаю люди, работающие над другим). Всегда результаты отличаются как минимум не порядок. Это явление нормальное и не стоит драматизировать. Берем, естественно, в большую сторону. Но если разница более, то надо искать ошибку или прибегать к литературе. Такое возможно, например, если SCAD или «Арбат» или «Кристалл» рассматривает элемент на действие момента, а он на самом деле его не воспринимает. Эти десятые, а порой и сотые доли момента, эта точность вычислений, которая, кончено же идет в плюс SCADу, способна влиять таким образом. Есть пример, он приведен тут. В этом примере нас будет интересовать армирование колонн, плит, диафрагм и шахты лифтов. Как задается армирование в построцессоре SCAD я описывать не буду, с этом не должно возникнуть проблем. Как проверять в «Арбат» — «сопротивление сечения». Так можно проверить на РСУ из SCAD стержневые элементы — колонны, балки. Можно выписать усилия худшие на наш взгляд и посчитать как колонну или балку, но такой способ не практикуется массами и результат такой проверки я не могу комментировать. Проверить плиту в «Арбат» — я не делал ни разу и вам не советую. Тоже касается стен. Хотя есть вариант проверки плиты по классической теории — необходимо отсечь все не нужно, а места , где плита опиралась на колонны заменить жесткими опорами и считать, что на всех типовых этажах будет одно и тоже армирование. Хочу добавить полезность ориентации векторов выдачи усилий и ориентации собственных осей, о которых написано здесь, и ещё… при расчете армирование плит вы упретесь в красненькие элементы в области опоры плиты на колонну. Решить эту проблему можно здесь при помощи капителей. Это был анализ, которого вполне достаточно для выдачи задания, выполнения чертежей и для экспертизы. Но, мы снова пойдем дальше и на волне этой темы проследуем:  — монтаж, на примере этого здания;  — расчет столбчатых фундаментов в ФОК;  — расчет свайных фундаментов в ФОК;  — анализ совместной работы каркаса здания с фундаментом (плита, сваи, столбы). 

www.half-science.com

4.1. Конструктивные особенности сжатых элементов

В железобетонных конструкциях все сжатые элементы рассчитываются как внецентренно сжатые.

Это обусловлено тем, что кроме фактического эксцентриситета приложения сжимающей силы (e=M/N) в железобетонном элементе, ввиду несовершенства его геометрических форм, отклонения фактических размеров сечений от проектных, неоднородности бетона геометрический и физический центры тяжести сечения не совпадают и поэтому в расчет дополнительно вводят так называемый случайный эксцентриситет еa. Суммарный эксцентриситет определяется по формуле: e0=e+ea.

При приложении сжимающей силы по оси элемента (е=M/N=0) учитывают только случайный эксцентриситет е0=еа, и элемент можно рассматривать как условно центрально-сжатый. К таким элементам относят промежуточные колонны в зданиях с неполным каркасом.

Колонны и стойки при е0=еа назначают обычно квадратного сечения, иногда прямоугольного. В целях стандартизации размеры сечения колонн назначают кратными 50 мм.

Минимальные размеры сечения сборных колонн жилых и общественных зданий допускается принимать равными 200200 мм, промышленных зданий – 300300 мм.

Монолитные железобетонные колонны рекомендуется принимать с размерами поперечного сечения не менее 250250 мм.

Бетон для колонн применяют не ниже класса по прочности на сжатие ,a для сильно загруженных не ниже .

Колонны армируют продольными стержнями диаметром не менее 12 мм из стали классов S400 или S500 и поперечными стержнями (или хомутами) из стали классов S240, S400 и S500.

При проектировании сжатых колонн надо соблюдать следующие конструктивные требования:

– размеры сечений колонн должны быть такими, чтобы их гибкость в любом направлении не превышала 120;

– минимальная площадь сечения продольной арматуры As,tot должна составлять, %:

в элементах при l0/i

Источник:

Расчет на продавливание

Любую плитную конструкцию (плиту перекрытия, фундаментную плиту или плитный ростверк) при наличии сосредоточенной силы необходимо проверять на продавливание.

Причем, сосредоточенной силой может выступать и обыкновенное наличие опоры (колонны или сваи), т.к.

в данном месте нагрузка в плите концентрируется и стремится «продавить» плиту.

Обратите внимание, на продавливание проверяют только плитные конструкции! Балки (в том числе балочные ростверки) на продавливание считать не нужно.

В чем суть продавливания? Чем оно опасно?

Если на плиту давить сосредоточенная нагрузка, она пытается выдавить под собой кусочек плиты.

Если прочностных характеристик бетона и толщины плиты достаточно, чтобы выдержать продавливающую силу, то конструкция выстоит.

Иногда случается, что продавливающая сила превышает несущую способность плиты, тогда в ход идет поперечная арматура.

Если и этого недостаточно, приходится увеличивать (иногда локально – в виде капителей под перекрытиями или банкеток над фундаментными плитами) толщину плиты.

При этом сосредоточенная сила пытается именно выдавить кусочек плиты.

Предположим, у нас есть плита определенной толщины, на которую давит сила F.

Давление этой силы распределяется по небольшой площадке (на рисунке показана черным) – это и будет верхнее основание пирамиды продавливания.

В железобетоне любое усилие распространяется (расширяется) под углом 45 градусов.

Поэтому действующая сила будет пытаться выколоть участок плиты, имеющий форму пирамиды и расширяющийся к низу под углом 45 градусов.

Нижнее основание пирамиды (показано бордовым) ограничивает контур продавливания внизу плиты. В итоге, мы имеем вот такую пирамиду, пытающуюся выколоться из плиты, и каждая грань этой пирамиды (при отсутствии ограничений, о которых поговорим ниже) наклонена под углом 45 градусов.

Какие факторы влияют на продавливание?

1) Толщина плиты – чем она меньше, тем больше риск продавливания.

2) Величина защитного слоя до рабочей арматуры в основании пирамиды продавливания – чем больше защитный слой, тем меньше рабочая высота сечения, и тем больше риск продавливания (причем, каждые 10 мм играют значительнейшую роль).

3) Величина сосредоточенной нагрузки – чем больше нагрузка, тем хуже для плиты.

4) Размеры площадки, по которой распределена сосредоточенная нагрузка – чем меньше площадка, тем хуже.

5) Класс бетона по прочности – чем меньше, тем хуже.

6) Площадь поперечной арматуры (если она есть) – чем больше площадь, тем лучше плита держит продавливание; хотя здесь есть ограничение в условиях формулы (201) – до бесконечности площадь увеличивать не получится.

В каких случаях необходимо выполнять расчет на продавливание?

1) Если на плите (будь то фундамент или перекрытие) есть сосредоточенная нагрузка – опирается какая-то стойка, оборудование установлено и т.п.

В этом случае эта сосредоточенная нагрузка служит продавливающей силой, и чем меньше площадь ее опирания, тем больше вероятность риска продавливания.

2) Если плита опирается на колонну или фундаментная плита – на сваю. В этом случае нагрузка от плиты концентрируется на опоре, и реакция этой опоры служит продавливающей силой, пытающейся выдавить вверх пирамиду из плиты.

3) Если в плитном ростверке колонна опирается где-то между сваями. Здесь, как и в первом случае, нагрузка от колонны служит продавливающей силой.

4) В расчете столбчатого фундамента под колонну подошва также проверяется на продавливание от действия нагрузки от колонны.

Обычно в ходе расчета на фундаменте наращиваются ступени до тех пор, пока не будет удовлетворено условие по продавливанию.

Рассматривать расчет на продавливание мы будем на основании п. 3.

96 Пособия по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры к СНиП 2.03.01-84.

Обратите внимание, что если считать по российскому пособию к СП 52-101-2003, то там будут другие формулы, и расчет несколько отличается.

Пример 1. Расчет плиты перекрытия на продавливание

На плиту перекрытия давит сосредоточенная нагрузка (допустим, стойка какого-то оборудования или что-то подобное).

Сосредоточенная – это не значит, что она приходит в точку, но площадь ее приложения ограничена небольшим участком.

Необходимо выполнить расчет плиты перекрытия на продавливание.

Толщина плиты 230 мм, расстояние от нижней грани плиты до оси рабочей арматуры 30 мм, бетон класса В25 (Rbt = 9.

7 кг/см² при коэффициенте условий работы 0,9), продавливающая сила F = 3 т, площадка продавливания размером 0,2х0,3 м.

До начала расчета определимся с геометрией пирамиды продавливания. В расчете по высоте участвует не вся плита, а ее рабочая высота h₀ = 230 – 30 = 200 мм.

Это объясняется тем, что когда распространяющееся сверху вниз под углом 45 градусов усилие доходит до нижней арматуры, пирамида перестает расширяться, а выкалывается дальше вертикально.

Поэтому чем больше рабочая высота сечения, тем лучше для плиты.

Сила F распределена по площадке 0,2х0,3 м, эта площадка служит верхним основанием пирамиды продавливания. Нам необходимо определить размеры основания пирамиды.

Сделать это просто графически: т.к.

угол наклона граней пирамид 45 градусов, то каждая грань нижнего основания в плане отстоит от каждой грани верхнего основания на величину h₀ = 200 мм (это видно из рисунка).

Если посчитать размеры нижнего основания математически, то мы получим следующие величины:

200 + 2h₀ = 200 + 2∙200 = 600 мм;

300 + 2h₀ = 300 + 2∙200 = 700 мм.

Теперь приступим к расчету. По формуле (200) пособия определим, выдержит ли бетон плиты продавливающую силу.

Найдем периметры нижнего и верхнего оснований пирамиды:

2∙(200 + 300) = 1000 мм = 1 м;

2∙(600 + 700) = 2600 мм = 2,6 м.

Среднеарифметическое значение периметров равно: (1 + 2,6)/2 = 1,8 м (по сути, это периметр, проходящий по средней линии пирамиды).

Найдем правую часть уравнения (200): 1,0∙9,7∙10∙1,8∙0,2 = 34,92 т (здесь 10 – коэффициент перевода кг/см² в т/м²).

Проверим, выполняется ли условие (200):

F = 3 т

Источник:

Расчет монолитной плиты перекрытия типового этажа

 Расчет монолитной плитыперекрытия типового этажа

Исходныеданные

Расчёт проведён на основании СНиП 2.03.01-84″Железобетонные конструкции».

Геометрические параметры:

Толщина плиты перекрытия – 160 мм

Высота рабочей зоны – h0 = 140 мм

Расчётная схема представлена на рис. 1

Бетон – тяжелый, класса по прочности на сжатие В25.

18.5 МПа

1.6 МПа (табл.12)

14.5 МПа

1.05 МПа (табл.13)

=30000 МПа

Коэффициент условия работы бетона =0.9 (табл.15)

Арматура периодического профиля класса А-III Æ12 мм:

=365 МПа (табл.22)

390 МПа (табл.19)

=200000 МПа (табл.29)

Нагрузки:

Определение нагрузок см. пункт «Сборнагрузок».

Расчётные нагрузки на 1 м перекрытияс учетом коэффициента надежности по назначению = 0.95:

Полная– q = 10.1 ´ 0.95 =9.6 кН/м2

Нормативная – qn =8.5 ´ 0.95 = 8.1 кН/м2

Нормативная длительная –  = 7.3 ´ 0.95 =6.94 кН/м2

Кроме того, по краю плиты действует линейнаяпостоянная нагрузка от наружных стен здания и от ограждения балкона:

Полная –

Нормативная  –

Категория по трещиностойкости – III (трещиныдопускаются)

Статический расчёт:

Статический расчет для всей плиты перекрытия типовогоэтажа был выполнен на компьютере по программному комплексу «ЛИРА-WINDOWS»,реализующему метод конечных элементов.

Результаты расчёта представлены.

Действующие максимальные изгибающие моменты отрасчётной нагрузки:

по оси ОХ:в пролёте М1= 16.1 кН×м (в нижнейзоне)

на опореМ2 = 31.3 кН×м (в верхней зоне)

по оси ОУ:в пролёте М3= 5.9 кН×м (в нижнейзоне)

на опореМ4 = 16.6 кН×м (в верхней зоне)

Подбор арматуры

Подбор арматуры осуществляем на 1 п.м.:

am= M / (Rb ´ gb2 ´ b ´ h02)

где gb2 = 0.9 –учитывает длительность воздействия

am1= 1610 / (1.45 ´ 0.9 ´ 100 ´ 142) = 0.063

am2= 3130 / (1.45 ´ 0.9 ´ 100 ´ 142) = 0.122

am3= 590 / (1.45 ´ 0.9 ´ 100 ´ 142)= 0.023

am4= 1660 / (1.45 ´ 0.9 ´ 100 ´ 142) = 0.065

Относительная высота сжатой зоны:

Предельная высота сжатой зоны:

xR = w / (1 + ssR ´ (1 – w / 1.1) / sscu)

где w – характеристика сжатой зоныбетона, для тяжёлого бетона:

w = 0.85 – 0.008 ´ Rb= 0.85 – 0.008 ´ 14.5 = 0.734

ssК = Rs = 365 МПа – напряжение в арматуре

sscu = 500 МПа – предельноенапряжение в арматуре сжатой зоны

Таким образом:

xR = 0.734 / (1 + 365 ´ (1 – 0.734 / 1.1) / 500) = 0.59

В нашем случае: xi

Определяем:

z = 1 – 0.5 ´ x

z1 = 1 –0.5 ´ 0.065 = 0.968

z2 = 1 –0.5 ´ 0.131 = 0.935

z3 = 1 –0.5 ´ 0.023 = 0.989

z4 = 1 –0.5 ´ 0.067 = 0.967

Определяем требуемую площадь арматуры:

Asтр = M / (Rs ´ z ´ h0)

As1 = 1610/ (36.5 ´ 0.968 ´ 14) = 3.3 см2

As2 = 3130/ (36.5 ´ 0.935 ´ 14) = 6.6 см2

As3 = 590/ (36.5 ´ 0.989 ´ 14) = 1.2 см2

As3 = 1660/ (36.5 ´ 0.967 ´ 14) = 3.4 см2

Такимобразом, принимаем армирование:

по осиОХ: в пролёте (в нижней зоне) Æ10 шаг 200 – = 3.9 см2

на опоре (в верхней зоне) Æ10 шаг 100 – = 7.8 см2

по осиОУ: в пролёте (в нижней зоне) Æ6 шаг200 –  = 1.42 см2

на опоре (в верхней зоне) Æ10 шаг 200 –  = 3.9 см2

Определение несущей способности по принятомуармированию

Несущая способность плиты по принятому армированиюопределяется по формуле:

Проверка образования трещин

Момент трещинообразования:

Mcrc = Rbt,ser ´ Wpl ± Mrp

где Mrp= 0 – при отсутствии предварительногонапряжения

 Wpl = b ´ h2 / 3.5 – для элементов прямоугольного сечения, на 1 м

 Wpl = 100 ´ 162 / 3.5 = 7314 см2

Mcrc = 0.16 ´ 7314 = 1170 кН×см

Mcrc = 1170 кН×см

Mcrc = 1170 кН×см

Mcrc = 1170 кН×см > М3 = 696 кН×см

Mcrc = 1170 кН×см

Вывод: трещины образуются в сечении нормальном к оси ОХ

Расчет по раскрытию трещин нормальных кпродольной оси

Расчёт ширины раскрытия трещин проводится по формуле:

где d = 1.0 – коэффициент дляизгибаемых элементов

m = – коэффициент армирования

m = =0.0056 > mmin = 0.0005

= 1.6 – 15 ´ m – коэффициентдля длительных нагрузок

 = 1.6 – 15 ´0.0056 = 1.516

h = 1.0 – коэффициент для арматуры периодического профиля

Определениеуровня напряжений в растянутых стержнях арматуры:

Относительная высота сжатой зоны при образованиитрещин

Определяем плечо внутренней пары сил:

z = h0 ´ (1 – xcrc / 2) = 14 ´ (1 – 0.159 / 2) = 12.8 см

Изгибающий момент от нормативной длительной нагрузки:

 = 2710 кН×см

Приращение напряжений в арматуре для изгибаемыхэлементов:

ss = Mn / (As ´ z) = 2710 / (7.8 ´ 12.8) = 27.2 кН/см2= 272 МПа

Таким образом, ширина раскрытия трещин:

Условие выполняется, величинараскрытия трещин не превышает допустимой величины.

Т.к. условие выполняется при действии на плитуизгибающего момента М2 = 31.3 кН×см (на опоре), топроверка при моментах М1 = 22.3 кН×см и М4= 16.6 кН×см не требуется.

Расчёт деформаций плиты перекрытия в осях III-1-III-2/III-Ж

Расчет производитсяна длительную нормативную нагрузку, включающую, распределенную по площади нагрузку= 6.

94 кН/м2; краевуюнагрузку от опирания наружной стены –  инагрузку от опирания ограждения балкона – , плита перекрытия рассчитывалась на компьютере попрограммному комплексу «ЛИРА-WINDOWS».

Результаты компьютерных расчетов: моменты «Мх» в расчетном направлении ОХ Приведены на рис. .

Прогиб плитыопределялся по «Пособию по проектированию бетонных и железобетонных конструкцийиз тяжелых и легких бетонов без предварительного напряжения арматуры к СНиП2.03.01-84*.

Арматура в пролете изусловий прочности:

Æ10 А-III шаг 200 мм,

Максимальные величины моментов в направлении ОХ от нормативнойдлительной нагрузки:

– в пролете;

– на опоре.

Из табл. 34 по  находим соответствующие продолжительному действиюнагрузки.

Учет выгиба на опорах.

Арматура на опоре изусловий прочности:

Æ10 А-III шаг100 мм,

Из табл. 34 по  находим соответствующие продолжительному действиюнагрузки.

– условие не выполнено.

Увеличиваем арматурав пролете из условий жесткости плиты перекрытия

– Æ12 А-IIIшаг 200 мм,

Из табл. 34 по  находим соответствующие продолжительному действиюнагрузки.

–условие выполняется.

Источник:

Расчет монолитных железобетонных конструкций в среде проектно-вычислительного комплекса «SCAD Office» с получением проектной документации в системе информационного моделирования «ALLPLAN»

Тема: Общие принципы моделирования несущих железобетонных конструкций в ALLPLAN.

  1. Описание моделируемого здания.
  2. Общая информация о системе BIM моделирования Nemetschek ALLPLAN.
  3. Интерфейс программы ALLPLAN.
  4. Создание нового проекта с использованием предварительно настроенного шаблона.

Тема: Моделирование опалубочной модели несущих железобетонных конструкций в ALLPLAN.

  1. Моделирование колонн и балок.
  2. Создание перекрытий и фундаментной плиты.
  3. Добавление проемов в перекрытии.
  4. Создание элементов стен.
  5. Размещение оконных и дверных проемов.
  6. Копирование этажей и редактирование геометрии конструктивных элементов.
  7. Моделирование металлических косоуров и стоек парапета.

Тема: Методы создания в ALLPLAN расчетных схем и их экспорт в CAE системы.

  1. Особенности создания аналитической схемы и взаимодействия с CAE системами.
  2. Экспорт модели в формате IFC.
  3. Экспорт модели в формат OPR расчетного комплекса SCAD.

Самостоятельная работа №1: «Создание железобетонного монолитного каркаса многоэтажного жилого здания в программе ALLPLAN”.

Использование препроцессора ФОРУМ для создания и доработки расчетных схем

Тема: Практическое освоение возможностей ФОРУМА для создания укрупненной расчетной модели

  1. Общие принципы создания модели.
  2. Пример создания расчетной схемы, способы задания свойств элементов и их корректировка.
  3. Генерация результирующего проекта в SCAD.

Тема: Практическое освоение возможностей ФОРУМА по импорту данных в формате IFC.

  1. Общие принципы взаимодействия расчетных CAE систем и CAD систем для пространственного моделирования.
  2. Пример импорта в ФОРУМ расчетной схемы многоэтажного жилого здания из ALLPLAN.
  3. Способы оперативной доработки в ФОРУМ геометрии расчетной схемы и корректировки элементов.

Самостоятельная работа №2: «Создание железобетонного монолитного каркаса многоэтажного жилого здания в препроцессоре ФОРУМ”.

Выполнение расчетов и анализ напряженно-деформированного состояния железобетонных конструкций в SCAD Office

Тема: Доработка в SCAD созданной в ФОРУМ расчетной схемы.

  1. Корректировка импортированной из препроцессора ФОРУМ расчетной схемы.
  2. Типы пластинчатых конечных элементов. Местная система координат пластинчатых элементов.
  3. Проверка расчетной схемы при работе под действием нагрузки от собственного веса конструкций.

Самостоятельная работа №3: «Доработка в SCAD расчетной схемы из препроцессора ФОРУМ и выполнение проверочного расчета схемы под нагрузкой от собственного веса конструкций”.

Тема: Задание загружений и комбинаций загружений.

  1. Задание постоянных и полезных нагрузок.
  2. Задание атмосферных нагрузок.

Тема: Задание специальных исходных данных.

  1. Задание основных сочетаний нагрузок.
  2. Задание расчетных сочетаний усилий.

Самостоятельная работа №4: «Задание загружений и комбинаций загружений в SCAD с последующим контролем деформаций расчетной схемы по второй группе предельных состояний”.

Тема: Подготовка схемы к расчету совместно с грунтовым основанием.

  1. Задание исходного коэффициента постели С1
  2. Определение напряжений под фундаментной плитой и передача геометрии плиты в КРОСС
  3. Интерфейс программы КРОСС

Тема: Совместный расчет здания с грунтовым основанием

  1. Первая итерация по расчету коэффициентов постели в программе КРОСС.
  2. Последующие итерации расчета коэффициентов постели в программе КРОСС

Самостоятельная работа №5: «Моделирование совместной работы несущего железобетонного каркаса с упругим грунтовым основанием в программе КРОСС”

Работа с постпроцессорами вычислительного комплекса SCAD Office

Тема: Анализ напряженно-деформированного состояния расчетной схемы.

  1. Анализ деформаций. Вывод результатов в графическом виде.
  2. Выравнивание направления выдачи усилий.
  3. Анализ эпюр усилий в стержневых конечных элементах и напряжений в пластинчатых элементах.

Тема: Подбор армирования железобетонных конструкций.

  1. Задание расчетных сочетаний усилий.
  2. Расчет армирования железобетонных элементов в модуле «Бетон».
  3. Анализ в постпроцессоре результатов подбора арматуры.

Тема: Документирование результатов расчета.

Самостоятельная работа №6: «Задание расчетных сочетаний усилий (Новые РСУ) и подбор армирования железобетонных стержневых и пластинчатых элементов”.

Создание в ALLPLAN концептуальной модели армирования на основании результатов подбора армирования в вычислительном комплексе SCAD Office

Тема: Моделирование армирования.

  1. Импорт результатов подбора арматуры из вычислительного комплекса SCAD Office в ALLPLAN в виде интерактивных изополей армирования.
  2. Армирование фундаментной плиты.
  3. Армирование стен.
  4. Армирование колонн и ригелей.

Выпуск в ALLPLAN документации раздела КЖ на стадии «Проект» на основании моделей опалубки и концептуального армирования

Тема: Получение чертежей на основании модели.

  1. Настройка параметров проекта и получение чертежа общего вида с заполнением штампа.
  2. Контроль атрибутов и получение опалубочных чертежей с размещением аннотаций.
  3. Контроль атрибутов и получение чертежа армирования фундаментной плиты с размещением аннотаций.

Тема: Получение ведомостей и спецификаций на основании модели.

  1. Создание ведомости чертежей.
  2. Создание спецификации к схеме расположения опалубочного чертежа.

Самостоятельная работа №7: «Армирование железобетонного монолитного перекрытия и получение чертежей проектной документации в программе ALLPLAN”.

Источник:

Несколько примеров расчета в SCAD Office

Программный комплекс SCAD помимо расчетного модуля конечно-элементного моделирования имеет в своем составе набор программ, способных выполнять решение более частных задач.

Ввиду своей автономности набор программ сателлитов можно использовать отдельно от основного расчетного модуля SCAD, причем не запрещается выполнять совместные расчеты с альтернативными программными комплексами (ПК ЛИРА 10, Robot Structural Analysis, STARK ES). В данной статье мы рассмотрим несколько примеров расчета в SCAD Office.

Плита будет монтироваться на стройплощадке, например, на кирпичные стены шарнирно. Моделировать для такой задачи всю плиту, часть здания или целиком все здание считаю нецелесообразным, поскольку трудовые затраты крайне несоизмеримы. На помощь может прийти программа АРБАТ. Ребро рекомендуется нормами рассчитывать, как тавровое железобетонное сечение. Меню программного комплекса SCAD интуитивно-понятное: по заданному сечению, армированию и усилию инженер получает результат о несущей способности элемента со ссылкой на пункты нормативных документов. Результат расчета может быть автоматически сформирован в текстовом редакторе. На ввод данных уходит примерно 5-10 мин, что значительно меньше формирования конечно элементной модели ребристого перекрытия (не будем забывать, что в определенных ситуациях расчет методом конечных элементов дает больше расчетных возможностей).

Пример расчета закладных изделий в SCAD

Теперь вспомним расчет закладных изделий для крепления конструкций к железобетонным сечениям.

Нередко встречаю конструкторов, закладывающих параметры из конструктивных соображений, хотя проверить несущую способность закладных довольно просто.

Для начала необходимо вычислить срезающее усилие в точке крепления закладной детали.

Сделать это можно вручную, собрав нагрузки по грузовой площади, или по эпюре Q конечно-элементной модели.

Затем воспользоваться специальным расчетным боком программы АРБАТ, занести данные по конструкции закладной детали и усилиям, и в итоге получить процент использования несущей способности.

Еще с одним интересным примером расчета в SCAD может столкнуться инженер: определение несущей способности деревянного каркаса.

Как мы знаем, ввиду ряда причин расчетные программы МКЭ (метод конечных элементов) не имеют в своем арсенале модули расчета деревянных конструкций по российским нормативным документам. в связи с этим расчет может производится вручную или в другой программе. Программный комплекс SCAD предлагает инженеру программу ДЕКОР.

Помимо данных по сечению, программа ДЕКОР потребует от инженера ввода расчетных усилий, получить которые поможет ПК ЛИРА 10.

Собрав расчетную модель, можно присвоить стержням параметрическое сечение дерева, задать модуль упругости дерева и получить усилия по деформационной схеме:

Полученные усилия далее необходимо задать в программе ДЕКОР для расчета сопротивления деревянного сечения.

В данном примере расчета в SCAD, критическим значением оказалась гибкость элемента, запас по предельному моменту сечений «солидный». Вспомнить предельное значение гибкости деревянных элементов поможет информационный блок программы ДЕКОР:

Пример расчета несущей способности фундамента в SCAD

Неотъемлемой частью моделирования свайно-плитного фундамента является расчет несущей способности и осадки сваи. Справится с задачей подобного рода, инженеру поможет программа ЗАПРОС.

В ней разработчики реализовали расчет фундаментов согласно нормам «оснований и фундаментов» и «свайного фундамента» (в расчетных программах МКЭ таких возможностей не встретишь).

Итак, чтобы смоделировать сваю, необходимо вычислить жесткость одноузлового конечного элемента. Жесткость измеряется в тс/м и равна отношению несущей способности сваи к ее осадке.

Моделирование рекомендуется выполнять итерационно: в начале задавать приближенную жесткость, затем уточнять значение жесткости по вычисленным параметрам сваи.

Построенная модель расчета методом конечных элементов позволит нам не только точно найти нагрузку на сваю, но и рассчитать армирование ростверка:

После расчета конструкции пользователь ПК ЛИРА 10 сможет вычислить требуемую нагрузку на сваю по выводу мозаики усилий в одноузловом конечном элементе.

Полученное максимальное усилие будет являться требуемой расчетной нагрузкой на сваю, несущая способность выбранной сваи должна превышать требуемое значение.

В качестве исходных данных в программу ЗАПРОС вводиться тип сваи (буровая, забивная), параметры сечения сваи и грунтовые условия согласно данным геологических изысканий.

Пример расчета узловых соединений в SCAD

Расчет узловых соединений – важная часть анализа несущей способности зданий. Однако, зачастую, конструктора пренебрегают данным расчетом, результаты могут оказать крайне катастрофическим.

На рисунке приведен пример отсутствие обеспечения несущей способности стенки верхнего пояса подстропильной фермы в точке крепления стропильной фермы.

Согласно СП «Стальные конструкции» подобные расчеты производятся в обязательно порядке.

В программа расчета методом конечных элементов и такого расчета тоже не встретишь. Выходом из ситуации может стать программа КОМЕТА-2.

Здесь пользователь найдет расчет узловых соединений согласно действующих нормативных документов.

Наш узел – ферменный и для его расчета необходимо выбрать советующий пункт в программе.

Далее пользователь выбривает очертание пояса (наш случай V-образный), геометрические параметры панели, усилия каждого стержня.

Усилия, как правило, вычисляются в расчетных программах МКЭ.

По введенным данным программа формирует чертеж для наглядного представления конструкции узла и вычисляет несущую способность по всем типам проверки согласно нормативным документам.

Пример построения расчета МКИ в SCAD

Построение моделей расчета методом конечных элементов не обходится без приложения нагрузок, вычисленные вручную значения присваиваются в расчетных программах МКЭ на элемент.

Помощь в сборе ветровых и снеговых нагрузках инженеру окажет программа ВЕСТ.

Программа включает в себя несколько расчетных модулей, позволяющих по введенном району строительства и очертанием контура здания вычисляет ветровую и снеговую нагрузку (самые распространенные расчетные модули программы ВЕСТ).

Так, при расчете навеса, конструктор должен указать высоту конька, угол наклона и ширину ската. По полученным эпюрам нагрузка вводится в расчетную программу, например, ПК ЛИРА 10.4.

В качестве вывода, могу сказать, что программный комплекс SCAD и его сателлиты позволяют пользователю существенно снизить трудозатраты при вычислении локальных задач, а также формировать точные расчетные модели, а также содержат справочные данные, необходимые в работе инженеров — строителей. Автономность программ позволяет конструкторам использовать их в сочетании с любыми расчетными комплексами, основанных на расчете методом конечных элементов.

Также рекомендую посмотреть вебинар по совместному использованию ПК ЛИРА 10.4 и программы ЗАПРОС (SCAD office) на примере расчета свайного основания.

Источник:

Армирование монолитной плиты — это сложная и ответственная задача. Конструктивный элемент воспринимает серьезные изгибающие нагрузки, с которыми бетону не справится. По этой причине при заливке монтируют арматурные каркасы, которые усиливают плиту и не дают ей разрушаться под нагрузкой.

Как правильно армировать конструкцию? При выполнении задачи нужно соблюдать несколько правил. При строительстве частного дома обычно не разрабатывают подробный рабочий проект и не делают сложных расчетов. Из-за небольших нагрузок считаю, что достаточно соблюсти минимальные требования, которые представлены в нормативных документах. Также опытные строители могут заложить арматуру по примеру уже сделанных объектов.

Плита в здании может быть двух типов:

  • фундаментная;
  • перекрытия.

В общем случае армирование плиты перекрытия и фундаментной не имеет критических отличий. Но важно знать, что в первом случае потребуются стержни большего диаметра. Это вызвано тем, что под элементом фундамента есть упругое основание — земля, которое берет на себя часть нагрузок. А вот схема армирования плиты перекрытия не предполагает дополнительного усиления.

Армирование фундаментной плиты

Арматура в фундамент в этом случае укладывается неравномерно. Необходимо усилить конструкцию в местах наибольшего продавливания. Если толщина элемента не превышает 150 мм, то армирование для монолитной плиты фундамента выполняется одной сеткой. Такое бывает при строительстве небольших сооружений. Также тонкие плиты используются под крыльца.

Для жилого дома толщина фундамента обычно составляет 200—300 мм. Точное значение зависит от характеристик грунта и массы здания. В этом случае арматурные сетки укладываются в два слоя друг над другом. При монтаже каркасов необходимо соблюдать защитный слой бетона. Он позволяет предотвратить коррозию металла. При возведении фундаментов величина защитного слоя принимается равной 40 мм.

Диаметр армирования

Перед тем как вязать арматуру для фундамента, потребуется подобрать ее сечение. Рабочий стержни в плите располагаются перпендикулярно в обоих направлениях. Для соединения верхнего и нижнего ряда используют вертикальные хомуты. Общее сечение всех прутов в одном направлении должно составлять не менее 0,3% от площади сечения плиты в этом же направлении.

Пример армирования

Если сторона фундамента не превышает 3 м, то минимально допустимый диаметр рабочих прутов назначается равным 10 мм. Во всех остальных случаях он составляет 12 мм. Максимально допустимое сечение — 40 мм. На практике чаще всего используют стержни от 12 до 16 мм.

Перед закупкой материалов рекомендуется посчитать массу необходимой арматуры для каждого диаметра. К полученному значению прибавляют примерно 5 % на неучтенные расходы.

Укладка металла по основной ширине

Схемы армирования монолитной плиты фундамента по основной ширине предполагают постоянные размеры ячейки. Шаг прутьев принимается одинаковым независимо от расположения в плите и направления. Обычно он находится в пределах 200—400 мм. Чем тяжелее здание, тем чаще армируют монолитную плиту. Для кирпичного дома рекомендуется назначать расстояние 200 мм, для деревянного или каркасного можно взять большее значение шага. При этом важно помнить, что расстояние между параллельными прутами не может превышать толщину фундамента более чем в полтора раза.

Обычно и для верхнего, и для нижнего армирования используют одинаковые элементы. Но если есть необходимость уложить пруты разного диаметра, то те, которые имеют большее сечение укладывают снизу. Такое армирование плиты фундамента позволяет усилить конструкцию в нижней части. Именно там возникают наибольшие изгибающие силы.

Основные армирующие элементы

С торцов вязка арматуры для фундамента предполагает укладку П-образных стержней. Они необходимы для того, чтобы связать в одну систему верхнюю и нижнюю часть армирования. Также они предотвращают разрушение конструкции из-за крутящих моментов.

Зоны продавливания

Связанный каркас должен учитывать места, в которых изгиб ощущается больше всего. В жилом доме зонами продавливания будут участки, в которых опираются стены. Укладка металла в этой области осуществляется с меньшим шагом. Это значит, что потребуется больше прутов.

Например, если для основной ширины фундамента использован шаг 200 мм, то для зон продавливания рекомендуется уменьшить это значение до 100 мм.
При необходимости каркас плиты можно связать с каркасом монолитной стены подвала. Для этого на этапе возведения фундамента предусматривают выпуски металлических стержней.

Армирование монолитной плиты перекрытия

Расчет арматуры для плиты перекрытия в частном строительстве выполняется редко. Это достаточно сложная процедура, выполнить которую сможет не каждый инженер. Чтобы заармировать плиту перекрытия, нужно учесть ее конструкцию. Она бывает следующих типов:

  • сплошное;
  • ребристое:
  • по профлисту.

Последний вариант рекомендуется при выполнении работ самостоятельно. В этом случае нет необходимости устанавливать опалубку. Кроме того, за счет использования металлического листа повышается несущая способность конструкции. Самая низкая вероятность ошибок достигается при изготовлении перекрытия по профлисту. Стоит отметить, что оно является одним из вариантов ребристой плиты.

Перекрытие с ребрами залить непрофессионалу может быть проблематично. Но такой вариант позволяет существенно сократить расход бетона. Конструкция в этом случае подразумевает наличие усиленных ребер и участков между ними.

(function(w, d, n, s, t) {
w = w || [];
w.push(function() {
Ya.Context.AdvManager.render({
blockId: «R-A-510923-1»,
renderTo: «yandex_rtb_R-A-510923-1»,
async: true
});
});
t = d.getElementsByTagName(«script»);
s = d.createElement(«script»);
s.type = «text/javascript»;
s.src = «//an.yandex.ru/system/context.js»;
s.async = true;
t.parentNode.insertBefore(s, t);
})(this, this.document, «yandexContextAsyncCallbacks»);

Еще одни вариант — изготовит сплошную плиту перекрытия. В этом случае армирование и технология похожи на процесс изготовления плитного фундамента. Основное отличие — класс используемого бетона. Для монолитного перекрытия он не может быть ниже В25.

Стоит рассмотреть несколько вариантов армирования.

Перекрытие по профлисту

В этом случае рекомендуется взять профилированный лист марки Н-60 или Н-75. Они обладают хорошей несущей способностью. Материал монтируется так, чтобы при заливке образовались ребра, обращенные вниз. Далее проектируется монолитная плита перекрытия, армирование состоит из двух частей:

  • рабочие стержни в ребрах;
  • сетка в верхней части.

Армирование плиты перекрытия по профлисту

Наиболее распространенный вариант, когда в ребрах устанавливают по одному стержню диаметром 12 или 14 мм. Для монтажа прутов подойдут инвентарные пластиковые фиксаторы. Если нужно перекрыть большой пролет, в ребро может устанавливаться каркас из двух стержней, которые связаны между собой вертикальным хомутом.

В верхней части плиты обычно укладывается противоусадочная сетка. Для ее изготовления используют элементы диаметром 5 мм. Размеры ячейки принимаются 100х100 мм.

Сплошная плита

Толщина перекрытия чаще всего принимается равной 200 мм. Армирующий каркас в этом случае включает в себя две сетки, расположенные друг над другом. Такие сетки нужно связать из стержней диаметром 10 мм. В середине пролета устанавливают дополнительные пруты усиливающей арматуры в нижней части. Длина такого элемента назначается 400 мм или более. Шаг дополнительных прутов принимают таким же, как шаг основных.

В местах опирания нужно тоже предусмотреть дополнительное армирование. Но располагают его в верхней части. Также по торцам плиты нужны П-образные хомуты, такие же как в фундаментной плите.

Пример армирования плиты перекрытия

Расчет армирования плиты перекрытия по весу для каждого диаметра стоит выполнить до закупки материала. Это позволит избежать перерасхода средств. К полученной цифре прибавляют запас на неучтенные расходы, примерно 5%.

Вязка арматуры монолитной плиты

Для соединения элементов каркаса между собой пользуются двумя способами: сварка и связывание. Лучше вязать арматуру для монолитной плиты, поскольку сварка в условиях строительной площадки может привести к ослаблению конструкции.

Для выполнения работ используют отожженную проволоку, диаметром от 1 до 1,4 мм. Длину заготовок обычно принимают равной 20 см. Существует два типа инструмента для вязания каркасов:

  • крючок;
  • пистолет.

Второй вариант существенно ускорят процесс, снижает трудоемкость. Но для возведения дома своими руками большую популярность получил крючок. Для выполнения задачи рекомендуется заранее подготовить специальный шаблон по типу верстака. В качестве заготовки используют деревянную доску шириной от 30 до 50 мм и длинной до 3 м. На ней делают отверстия и углубления, которые соответствуют необходимому расположению арматурных прутов.

Общие рекомендации

  1. при соединении стержней по длине минимальный нахлест составляет 20 диаметров, но не меньше 250 мм;
  2. все зоны, в которых возможен изгиб, в обязательном порядке должны быть усилены;
  3. при выборе между сваркой и вязкой, лучше — второе;
  4. при необходимости использовать стержни разного диаметра, те, которые толще, располагают снизу.

Расчет фундаментной плиты

Фундамент, выполненный в виде монолитной плиты (фундаментной плиты), является самым дорогостоящим из всех видов оснований. Но несмотря на высокую цену, обусловленную значительными расходами на бетонную смесь и изоляционные материалы, это тип конструкции является одним из наиболее популярных среди частных застройщиков. Монолитный фундамент обладает самыми высокими эксплуатационными показателями, подходит для сложных грунтов, ему не страшен высокий уровень подземных вод, силы морозного пучения и он способен выдержать нагрузки от домов из тяжелых строительных блоков.

Сервис KALK.PRO предлагает вам воспользоваться простым и эффективным онлайн-калькулятором расчета плиты фундамента совершенно бесплатно. Вы получите подробную смету на материалы (арматуры, бетона, щебня, цемента, опалубки) и узнаете стоимость всей конструкции. В ближайшее время планируется добавить чертежи фундамента и адаптивную 3D-модель – добавляйте наш сайт в закладки!

Правильный расчет фундамента напрямую влияет на долговечность вашего сооружения, поэтому важно использовать только проверенные программы расчета. Наш сервис использует только актуальные нормативные и справочные данны, алгоритм работы ведется на основании положении СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 «Несущие и ограждающие конструкции» и ГОСТ Р 52086-2003 «Опалубка. Термины и определения»

Наш калькулятор расчета плиты фундамента поможет рассчитать необходимое количество материалов и расходы при будущем строительстве – быстро, просто и точно!

Расчет плитного фундамента

С помощью нашего вы можете произвести расчеты в автоматическом режиме, от вас требуется лишь ввести начальные данные. Точность расчетов напрямую зависит от введенных вами значений, поэтому мы рекомендуем вам внимательно перепроверять все вводимые величины. Также вы должны понимать, что итоговые данные представляют собой лишь математически верный расчет, но программа не учитывает поправки реальных ситуаций, поэтому полученные значения стоит использовать только в качестве ориентировки.

Калькулятор позволяет облегчить расчет, но не предоставляет рекомендации по выбору параметров и не показывает допустимые ошибки.

Инструкция

  • Размеры фундамента. Укажите габариты закладываемого основания – высоту, длину и ширину. Более подробно, как выполнить расчет толщины плиты фундамента вручную, смотрите ниже.
  • Армирование. Введите размеры ячейки армированного каркаса, а также выберите используемый диаметр арматуры.
  • Опалубка. Для получения объема пиломатериалов, введите параметры имеющейся доски.
  • Бетонная смесь. Вы можете самостоятельно указать пропорции бетона. Например, бетон марки М300 имеет пропорции 1 : 1,9 : 3,7 при использовании цемента марки ПЦ 400 и 1 : 2,4 : 4,3 – при цементе ПЦ 500. Более подробно, в справке чуть ниже.
  • Стоимость материалов. Введите стоимость отдельных материалов, для получения итоговой стоимости фундамента под ключ.

Затем нажмите кнопку «Рассчитать».

Результат расчета

  • Площадь плиты. Это значение может потребоваться для определения объема земляных работ.
  • Объем бетона. Параметр показывает необходимое количество бетонной смеси для отливки фундамента.
  • Арматура. Количество стержней для горизонтальных и вертикальных рядов, а также общая длина и масса.
  • Опалубка. Здесь отображается площадь опалубки и эквивалентный объем пиломатериалов, который потребуется для создания контура.
  • Материалы. Блок для вывода количества и стоимости всех видов сырья.

Если вас интересует более подробная справочная информация, ознакомиться с ней вы можете чуть ниже. Всем остальным – удачных расчетов и легкого строительства!

Монолитный фундамент своими руками

Главная проблема плитного фундамента – это высокая стоимость материалов, но его возведение обходится значительно меньшими силами. В стандартных условиях с данной работой могут легко справиться две пары умелых рук без привлечения специальной техники.

Перед закладкой основания вы должны получить необходимые экспертные заключения на счет геологических и гидрологических особенностей участка. От этих данных напрямую зависит, как характеристики самого фундамента, так и объем песчано-гравийной подушки, виды геотекстиля, расчет гидроизоляции и дренажной системы. Как уже упоминалось, всю эту информацию можно получить в специализированных организациях или же самостоятельно ознакомиться в справочниках, СНИПах и рассчитать коэффициенты вручную.

Плитный фундамент – Плюсы и минусы

Плитный фундамент — представляет собой монолитное бетонное армированное основание или нескольких независимых, но соединенных между собой железобетонных плит, располагающихся под коробкой здания.

Его главным преимуществом является самый низкий показатель удельного давления на грунт, то есть происходит равномерное распределение нагрузки на подстилающую поверхность, внезависимости от типа вышележащей конструкции. Таким образом, получается, что сооружения на монолитном фундаменте можно строить практически на всех видах почв, в том числе на сложных грунтах, сильнопучинистых и с высоким уровнем залегания подземных вод.

В силу своих качественных характеристик, плита применяется повсеместно при строительстве, как для легких построек из газо- пенобетона и дерева, так и при сооружении массивных многоэтажных конструкций из кирпича. Тем не менее использование этого типа основания не всегда оправдано, особенно если есть возможность создания более простых типов фундамента, например ленточного или свайного.

Суть проблемы заключается, в том что при увеличении массы дома, соответственно увеличивается толщина платформы, и следовательно непропорционально сильно возрастают затраты на материалы. В некоторых случаях, стоимость основания может превысить стоимость дома.

Поэтому перед тем, как выбрать определиться с типом фундамента для частного дома нужно провести подробную геолого-гидрологическую экспертизу подстилающего грунта, а для этого, желательно, воспользоваться помощью профильных организаций. Если же вам интересно самостоятельно провести анализ почвы, рекомендуем вам ознакомиться с нашей статьей – классификация грунтов.

Подводя итог, необходимо отметить, что если вы все же настоятельно решились обзавестись плитным фундаментом, готовьтесь потратить значительную сумму денег. Однако взамен вы получите уверенность в будущем, при соблюдении остальных правил строительства и ухода, дом гарантировано простоит эксплуатационный срок.

Калькулятор фундамента – монолитная плита, позволяет изготовить качественное основание, так как алгоритм обладает высокой точностью расчетов.

Устройство монолитного фундамента

Этапы работ

Закладка основания начинается с земляных работ. В большинстве случаев достаточно выкопать 40-60 см в глубину и разровнять получившуюся поверхность. На дне котлована создается песчаная или песчано-гравийная подушка, которая должна состоять из отдельных слоев песка и гравия, причем первым, в любом случае должен быть песок. Между слоями рекомендуется укладывать геотекстильную ткань, чтобы избежать перемешивания слоев. Затем все тщательно трамбуется вручную или с помощью вибрационной плиты.

Для придания формы будущего фундамента и во избежания вытекания бетона за его пределы, по периметру котлована создается каркас (опалубка) из подручных материалов, деревянных досок, пенополистерола или ОСБ-плит. Чтобы недопустить деформацию конструкции и возникновения больших зазоров между элементами их стягивают болтами, шпильками и/или подпираются балками. Также нужно отметить, что верхний край опалубки должен быть чуть выше предполагаемой высоты фундамента, обычно берут запас в 2-3 см.

При закладке дома в низменности, пойме или рядом с водоемами, обязательно наличие хорошей гидроизоляции. Она должна закрывать фундамент со всех сторон и быть чуть выше опалубки. В качестве горизонтальной гидроизоляции (которая будет укладываться на дно котлована), использую геотекстиль или полиэтиленовую пленку, вертикальные поверхности обрабатывают битумной мастикой или жидкой резиной. В зависимости от климатической зоны, дополнительно может применяться утеплитель, чаще всего экструдированный пенополистирол.

Предпоследний этап создания фундамента предполагает установку армирующей сетки. Для большинства одно- и двухэтажных домов подойдет 14-16 мм пруты в два слоя, с размером ячейки около 20-30 см на сторону. Армирование фундамента толщиной в 10-15 см производится в один слой сетками, толщиной 20-30 см производится в два слоя и соответственно увеличивается при больших величинах. Многие специалисты советуют использовать витую арматуру или проволоку для фиксации, взамен сварки. Стянутые элементы являются более подвижными и уберегут основание от неравномерной нагрузки. Более подробно об армировании монолитного фундамента можно ознакомиться в СНиП 52-01-2003 (СП 63.13330.2010).

Финальной стадией строительства фундамента является заливка бетона. Рекомендуется использовать бетонный раствор марки не ниже M-200 (В15) для жилых домов, так как применение смеси меньшей прочности чревато преждевременными деформациями и разрушением всей конструкции. Наиболее оптимальным при частном строительстве считается раствор М300 (B22,5). Если вы собираетесь изготавливать бетонную смесь своими руками, то вам будет полезна следующая таблица:

Пропорции по массе, Цемент : Песок : Щебень
100 1 : 4,6 : 7,0 1 : 5,8 : 8,1
150 1 : 3,5 : 5,7 1 : 4,5 : 6,6
200 1 : 2,8 : 4,8 1 : 3,5 : 5,6
250 1 : 2,1 : 3,9 1 : 2,6 : 4,5
300 1 : 1,9 : 3,7 1 : 2,4 : 4,3
400 1 : 1,2 : 2,7 1 : 1,6 : 3,2
450 1 : 1,1 : 2,5 1 : 1,4 : 2,9

Расчет толщины фундаментной плиты

Следующей важной задачей при строительстве является – расчет толщины плитного фундамента. Нет четких формул, как можно рассчитать данную величину, однако существуют справочные данные, в которых указаны ориентировочные значения, которые проверены многолетней практикой.

  • 100-150 мм. Легкие постройки, хозяйственные и садовые сооружения, бани, гаражи.
  • 150-250 мм. Каркасные дома, а также одноэтажные постройки из дерева и пористых материалов (газобетон, пенобетон, газосиликат).
  • 250-350 мм. Двухэтажные дома из дерева и пористых материалов, а также одноэтажные сооружения из кирпича или бетона.
  • 350-500 мм. Двух- или трехэтажные постройки из тяжелых материалов.

Данное правило применимо при использовании качественного бетона марки М300. Дальнейшее увеличение толщины фундамента экономически нецелесообразно, для сложных грунтов, рекомендуется использовать другие варианты, например свайные или столбчатые основания.

Смесь равномерно распределяют от углов к центру. Для утрамбовки используются специальные вибрационные машины, они позволяют удалить воздух и увеличить показатель текучести бетона. При отсутствии данного оборудования, постарайтесь залить фундамент равномерными горизонтальными слоями без разрывов.

Для того чтобы основание приобрело свою максимальную прочность, согласно строительным нормам, его необходимо выдерживать не менее месяца при влажности в 90-100% и температуре более +5 °C. Для этого плиту (в том числе опалубку) покрывают брезентом, а стыки проклеивают скотчем. Это позволяет защитить бетон от попадания прямых солнечных лучей и неблагоприятных метеоусловий – ветра, дождя, града.

Если ожидаются продолжительные высокие температуры, то примерно раз в сутки основание необходимо поливать водой, причем делать это нужно с помощью крупного садового пульверизатора и ни в коем случае не струей, так как может повредиться поверхность. Наоборот, при продолжительной холодной погоде, необходимо перекрыть весь фундамент с опалубкой слоем утеплителя.

Во избежание появления вертикальных швов и в дальнейшем трещин, плиту необходимо залить в течение одного дня. Для этого необходимо заранее договориться с поставщиком, так потребуются большие объемы за короткий срок.

Расчет фундаментной плиты – Пример расчета

Для большей наглядности, мы приведем пример расчета фундаментной плиты размером 10 на 10 метров для частного одноэтажного дома из пенобетона. Предположительная толщина плиты – 30 см. Примем за условие, что будет использоваться арматура диаметром 14 мм, с размером сетки в 20 см и укладываться она будет в два слоя. Выбираем бетонную смесь марки М-250 (соответствует классу прочности B20). Доска для опалубки имеют длину 6 м, ширину 150 мм, толщину 25 мм.

Решение:

  1. Площадь фундамента: 10 м × 10 м = 100 м2
  2. Объем фундамента: 100 м2 × 0,3 м = 30 м3
  3. Расчет бетона:
  • Объем бетона равен объему фундамента за исключением арматуры, но из-за того что ее процент в общей кубатуре настолько ничтожен, эти значения приравниваются.
  • Объем бетона равен 30 м3.

Расчет арматуры на плиту:

  • Количество на 1 направление при шаге 20 см: 10 м / 0,2 м = 50 штук. Так как у нас 2 направления в 2 слоя, то 50 × 4 = 200 штук.
  • Общая длина: 200 × 10 м = 2000 м. На всякий случай, введем поправочный коэффициент запаса 2%, тогда общая длина будет равна 2040 м.
  • Масса 1 метра арматуры 14 диаметра равняется 1,21 килограмма. Таким образом, масса всего армокаркаса будет равна: 2040 м × 1,21 кг = 2468,4 кг.

Расчет опалубки:

  • Длина одной доски 6 м, ширина 0,15 м, толщина 0,025 м. Для того чтобы рассчитать количество досок, узнаем площадь стороны фундамента: 10 м × 0,3 м = 3 м2, тогда общая площадь опалубки 3 м2 × 4 = 12 м2.
  • Площадь одной доски 6 м × 0,15 м = 0,9 м2, необходимое количество узнаем исходя из общей площади опалубки 12 м2 / 0,9 м2 = 13,3 = 14 досок.
  • Объем пиломатериалов для опалубки: 14 × (0,025 м × 0,9 м2) = 0,315 м3.

Расчет пиломатериалов для подпорки опалубки (используем те же доски 6000х150х25):

  • Шаг между стойками будет 0,5 м.
  • Подпорочную конструкцию выполним в виде египетского треугольника со сторонами 3 : 4 : 5, тогда при высоте 0,3 м, нижняя сторона будет 0,4 м, а верхняя – 0,5 м.
  • Объем стойки равен 0,3 м × 0,15 м × 0,025 м = 0,0011 м3, объем нижней подпорки 0,4 м × 0,15 м × 0,025 м = 0,0015 м3, объем верхней подпорки 0,5 м × 0,15 м × 0,025 м = 0,0019 м3.
  • Объем пиломатериалов для одной подпорочной конструкции 0,0045 м3.
  • Длина стороны фундамента 10 м, при шаге в 0,5 м, получим 10 м / 0,5 м = 20 подпорок на одну сторону, а для всего фундамента 20 × 4 = 80 штук.
  • Объем пиломатериалов для всех подпорочных конструкций 0,0045 м3 × 80 = 0,36 м3 или 0,36 м3 / 0,0225 м3 = 16 досок.

Используйте наш онлайн-калькулятор расчета фундаментной плиты и вы получите надежные точные значения, которые можно применять при строительстве дома.